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An Extension of propositional network announcement
logic PNAL

• Reasoning about information interaction in social networks
[Seligman et al., 2013, Xiong et al., 2017,
Baltag et al., 2019, Morrison and Naumov, 2020];
• Quantifying over informational events

[Balbiani et al., 2007, Ågotnes et al., 2010]: Add a
GAL-style modality 〈a〉 for each agent a to a minimal logic
for reasoning about “tweeting” ( the act of making network
announcements ), like Twitter, Weibo1:
• the sending by one agent of a message which received

simultaneously by a number of other agents (the sender’s
followers), determined by the network structure.

1A Twitter-like social media application in China
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Language of PNAL [Xiong et al., 2017]

Let Agnt and Prop be non-empty sets of agent names and
atomic propositional letters, respectively.

Definition (Language LPNAL)
The language of propositional network announcement logic ( PNAL)
is defined by the following grammar, where p ∈ Prop and a ∈ Agnt:

θ ::= p | ¬θ | θ ∧ θ ϕ ::= Baθ | ¬ϕ | ϕ ∧ ϕ | 〈a : θ〉ϕ.
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Models

Definition (Models)
A propositional network announcement model over Agnt and Prop is
a pair (F, ω), where
• the following relation F is a binary relation on Agnt and
• the belief state function ω : Agnt→ pow(Val) assigns each

agent a (possibly empty) set of valuations.

We write Fa for the set {b | bFa} of followers of a.
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Beliefs in restriction

Same as in PNAL, we restrict the beliefs of the agents, and the
messages they can tweet,

• to be about propositional sentences only.
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Belief update

Definition (Belief update)
When (only) agent a’s belief state is updated with θ, the result is the
belief state function [a↑θ]ω. More generally, the result of updating all
the agents in a set C of agents with θ is [C↑θ]ω, where

[C↑θ]ω(b) =

{
ω(b) ∩ [[θ]] if b ∈ C
ω(b) otherwise
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Satisfaction

Definition (Satisfaction)
F, ω |= Baθ iff ω(a) ⊆ [[θ]]
F, ω |= ¬ϕ iff F, ω 6|= ϕ
F, ω |= ϕ ∧ ψ iff F, ω |= ϕ and F, ω |= ψ
F, ω |= 〈a : θ〉ϕ iff F, ω |= Baθ and F, [Fa↑θ]ω |= ϕ
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Interpretation

• Baθ for agent a believes θ, formulas of the form Baθ are
called belief formulas, expressions of the type θ are
sometimes called messages;
• 〈a : θ〉ϕ for a can tweet θ, after which ϕ is the case. [a : θ]

for ¬〈a : θ〉¬.
• ~c is representing a (possibly empty) sequence of tweets, a

variable over expressions of the form c0 : θ0, . . . , cn : θn

(n ≥ 0), where each ci is an agent and each θi ∈ LPROP.
• We write 〈~c〉 for the sequence 〈c0 : θ0〉 . . . 〈cn : θn〉, and [~c ]

for ¬〈~c 〉¬.
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Axiomatization of PNAL

Taut if `0 ϕ then ` ϕ MP if ` ϕ→ ψ and ` ϕ then ` ψ
KB ` Ba(θ → χ)→ (Baθ → Baχ) K: ` [a : θ](ϕ→ ψ)→ ([a : θ]ϕ→ [a : θ]ψ)
NecB if `0 θ then ` Baθ Nec: if ` ϕ then ` [a : θ]ϕ
Sinc ` [a : θ]ϕ↔ (Baθ → 〈a : θ〉ϕ) Cnsv ` Bbχ→ [a : θ]Bbχ
Rat ` 〈a : θ〉Bbχ→ Bb(θ → χ) Foll ` 〈~c 〉(¬Bbχ ∧ 〈a : χ′〉Bbχ)→ [~e ][a : θ]Bbθ
Null if `0 θ then ` ϕ↔ 〈a : θ〉ϕ

Figure: Axioms and rules of PNAL. ϕ,ψ ∈ LPNAL, θ, θi, χ, χ
′ ∈ LPROP.

`0 denotes derivability in propositional logic.

Theorem (Theorem 3 in [Xiong et al., 2017])
PNAL is sound and strongly complete with respect to the class
of all models.
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Language and semantics of APNAL

The language of APNAL is LAPNAL, a conservative extension of
PNAL, defined as follows, where θ ∈ LPROP and a ∈ Agnt:

ϕ ::= Baθ | ¬ϕ | ϕ ∧ ϕ | 〈a : θ〉ϕ | [a]ϕ

We use derived connectives as for LPNAL, in addition to 〈a〉ϕ for
¬[a]¬ϕ
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Satisfaction

Definition (Satisfaction)
Satisfaction of a formula ϕ′ in a model F, ω is defined by

F, ω |= [a]ϕ iff F, ω |= [a : θ]ϕ for all θ ∈ LPROP

in addition to the clauses for LPNAL.

In other words, [a] quantifies over all possible announcements a
can truthfully make. We get that

F, ω |= 〈a〉ϕ iff F, ω |= 〈a : θ〉ϕ for some θ ∈ LPROP
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Validities of APNAL

The following validities follow immediately from the semantics.

Proposition
Let a ∈ Agnt, and ϕ,ψ ∈ LAPNAL. We have

|= [a]ϕ→ ϕ |= [a]ϕ→ [a : θ]ϕ
|= [a]ϕ→ 〈a〉ϕ |= [a]¬ϕ↔ ¬〈a〉ϕ
|= [a](ϕ ∧ ψ)↔ ([a]ϕ ∧ [a]ψ) |= [a](ϕ→ ψ)→ ([a]ϕ→ [a]ψ)
|= [a][a]ϕ↔ [a]ϕ
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Non-validities of the two types of modalities

The following combinations are generally not valid:

• 6|= [a : θ][b]ϕ→ [b][a : θ]ϕ

• 6|= [b][a : θ]ϕ→ [a : θ][b]ϕ

• 6|= [a : θ]〈b〉ϕ→ 〈b〉[a : θ]ϕ
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Church-Rosser like property

The fourth combination, is a Church-Rosser like property. The
formula

〈b : χ〉[a : θ]ϕ→ [a : θ]〈b : χ〉ϕ

is valid [Xiong et al., 2017, Pop. 11]. The fourth combination
property is in fact valid:

Proposition (Mixed-CR)
Let a, b ∈ A, θ ∈ LPROP, and ϕ ∈ LAPNAL. We have
|= 〈b〉[a : θ]ϕ→ [a : θ]〈b〉ϕ.

Proposition (CR)
Let a, b ∈ A, and ϕ ∈ LAPNAL. We have |= 〈a〉[b]ϕ→ [b]〈a〉ϕ.
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McKinsey formula

It’s not hard to see that the McKinsey formula,

[a]〈b〉ϕ→ 〈b〉[a]ϕ

is not valid, observed that

[a : θ]〈b : χ〉ϕ→ 〈b : χ〉[a : θ]ϕ

is not valid.
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Non-validities involving combinations of diamonds

• 6|= 〈a〉〈b〉〈a〉ϕ→ 〈a〉〈b〉ϕ
• 6|= 〈a〉〈b〉〈a〉ϕ→ 〈b〉〈a〉ϕ
• 6|= 〈a〉〈b〉ϕ↔ 〈b〉〈a〉ϕ
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Non-compactness

APNAL is not compact when there are at least two different
agents. Let b 6= a and

∆ = {¬Bbp, 〈a〉Bbp} ∪ {Baθ → Bbθ : θ ∈ LPROP}.

We can see that ∆ is unsatisfiable but any finite subset is
satisfiable.
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Infinitary Hilbert-style proof systems

Infinitary Hilbert-style proof systems are standard technique
can be found in [Renardel de Lavalette et al., 2002,
Ågotnes and Walicki, 2005, Kooi, 2006, Studer, 2008].

Our technique inspired from the completeness proof for APAL
[Balbiani and van Ditmarsch, 2015] and make use of Goldblatt’s
necessitation forms[Goldblatt, 1982].
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Necessity form

Definition (Necessity form)
Necessity forms are defined inductively as follows.
• # is a necessity form.
• If ψ̂ is a necessity form and ϕ ∈ LAPNAL, then ϕ→ ψ̂ is a

necessity form.
• If ψ̂ is a necessity form and a ∈ Agnt, θ ∈ LPROP, then

[a : θ]ψ̂ is a necessity form.
We write LNEC to denote the set of all necessity forms. If ϕ̂ is a
necessity form and ψ a formula, then ϕ̂(ψ) is the formula
obtained by substituting (the unique) # in ϕ̂ with ψ.
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Axiomatization of APNAL Sω
Definition
The derivation relation `Sω ( ὼ for simplicity), between sets of
LAPNAL-formulas and LAPNAL-formulas is the smallest relation
satisfying the properties in the following figure (lower part).

[a]int 〈a : θ〉ϕ→ 〈a〉ϕ
all LAPNAL instances of PNAL axiom schemas

(AX) ὼ ϕ where ϕ is an axiom
(DIA) {ϕ̂([a : θ]ψ) | θ ∈ LPROP} ὼ ϕ̂([a]ψ)
(MP) {ϕ,ϕ→ ψ} ὼ ψ
(NA) ὼ ϕ⇒ ὼ [a]ϕ
(W) Γ ὼ ϕ⇒ Γ ∪∆ ὼ ϕ
(CUT) Γ ὼ ∆ & Γ ∪∆ ὼ ϕ⇒ Γ ὼ ϕ

Figure: Axioms (upper part) and definition of the infinitary derivation
relation ὼ over the language LAPNAL (lower part). Γ ὼ ∆ means that
Γ ὼ ϕ for each ϕ ∈ ∆.
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Why DIA in necessity forms?

DIA is the only infinitary derivation rule. Let us illustrate DIA
with some examples.

C1: {[a : θ]ϕ | θ ∈ LPROP} ὼ [a]ϕ.
C2: {ψ → [a : θ]ϕ | θ ∈ LPROP} ὼ ψ → [a]ϕ

C3: {[b : χ][a : θ]ϕ | θ ∈ LPROP} ὼ [b : χ][a]ϕ.
C4: {[b : χ](ψ → [a : θ]ϕ) | θ ∈ LPROP} ὼ [b : χ](ψ → [a]ϕ).
C5: A general case of C3:

{[b1 : χ1] · · · [a : θ] · · · [bn : χn]︸ ︷︷ ︸
finite

ϕ | θ ∈ LPROP} ὼ [b1 : χ1] · · · [a] · · · [bn : χn]︸ ︷︷ ︸
only change one modality

ϕ.
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Soundness of Sω

Lemma
For any formula ϕ and set of formulas Γ, if Γ ὼ ϕ then Γ |= ϕ.

The proof is by induction on the definition of the ὼ relation.

• Base cases: AX, MP, and DIA.
• Inductive cases: NA, W, and CUT.
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Admissible rules in Sω

(MO) Γ ∪ {ϕ} ὼ ϕ
(IMP) Γ ὼ ϕ→ ψ & Γ ὼ ϕ⇒ Γ ὼ ψ
(RT) Γ ὼ ϕ→ ψ ⇒ Γ ∪ {ϕ} ὼ ψ
(NS) ὼ ϕ⇒ ὼ [a : θ]ϕ
(COND) Γ ∪∆ ὼ ϕ⇒ Γ ∪ {ψ → δ | δ ∈ ∆} ὼ ψ → ϕ
(DT) Γ ∪ {ψ} ὼ ϕ⇒ Γ ὼ ψ → ϕ
(RAA) Γ ∪ {ϕ} ὼ ⊥ ⇒ Γ ὼ ¬ϕ
(CON) Γ ὼ ϕ ∧ ψ ⇒ Γ ὼ ϕ & Γ ὼ ψ
(EQV) Γ ὼ ϕ↔ ψ ⇒ Γ ὼ ϕ ⇔ Γ ὼ ψ

Figure: Admissible rules in Sω.
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Strong completeness of Sω

Lemma (Lindenbaum)
Let Γ be a consistent set of formulas. There exists an MCS Γ′

such that Γ ⊆ Γ′.

Building MCS strategy:

• DIA-form. A formula obtained by substitution of [a]ψ on a
necessity form ϕ̂, written ϕ̂([a]ψ), is on DIA-form, the
formula β(: θ) = ϕ̂([a : θ]ψ) is called a DIA-witness.
• Extension strategy: We construct Γ′ ⊇ Γ inductively as

follows: Γ0 = Γ, Γ′ =
⋃

i∈N Γi, and
• Γi+1 = Γi ∪ {ψi+1}, if Γi ὼ ψi+1;
• Γi+1 = Γi ∪ {¬ψi+1}, if Γi 6 ὼ ψi+1 and ψi+1 does not have

the DIA-form;
• Γi+1 = Γi ∪ {¬ψi+1, ¬ψi+1(: θ)}, if Γi 6 ὼ ψi+1 and ψi+1 has

the DIA-form, and ψi+1(: θ) is a DIA-witness and
Γi 6 ὼ ψi+1(: θ).
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Strong completeness of Sω

Lemma (Lindenbaum)
Let Γ be a consistent set of formulas. There exists an MCS Γ′

such that Γ ⊆ Γ′.

Building MCS strategy:

• The consistency of Γ′ is showed by proving the following
claim:

Claim For any Γ′′ and ϕ such that Γ′′
ὼ ϕ, we have

Γ′′ ⊆ Γ′ ⇒ ϕ ∈ Γ′.
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Canonical model and property

For any MCS Γ, FΓ and ωΓ are defined as follows
[Xiong et al., 2017]:

• bFΓa iff [~c ][a : θ]Bbθ ∈ Γ for all ~c and θ
• ωΓ(a) =

⋂
{[[θ]] | Baθ ∈ Γ}.

We also define the following, when Γ, Γ′ are MCSs:

• Let 〈a : θ〉Γ = {ϕ | 〈a : θ〉ϕ ∈ Γ}.
• Let Γ E Γ′ iff Baθ ∈ Γ and Γ′ = 〈a : θ〉Γ for some a and θ.
• Let ≤ be the transitive closure of E.
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Canonical model and property

Lemma ([Xiong et al., 2017])
If Γ is an MCS and Γ ≤ Γ′ then

1. Γ′ is also an MCS and
2. there is a ~c such that:

(a) Γ′ = 〈~c 〉Γ, and
(b) [ ~c]ϕ ∈ Γ iff ϕ ∈ Γ′ for all ϕ, where ~c is the reversal of ~c.

Lemma ([Xiong et al., 2017])
If Γ ≤ Γ′ and Baθ ∈ Γ′ then [FΓa↑θ]ωΓ′ = ω〈a:θ〉Γ′ .
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Truth Lemma and Strong Completeness

Lemma (Truth Lemma)
FΓ, ωΓ |= ϕ iff ϕ ∈ Γ, for any ϕ and Γ.

Theorem (Strong Completeness)
For any set of formulas Γ and formula ϕ, if Γ |= ϕ then Γ ὼ ϕ.



Introduction The Logic of APNAL Proof System Discussion

Conclusion

• Extended PNAL with “ability” operators of the form 〈a〉
quantifying over the possible tweets agent a truthfully can
make.
• A sound and strongly complete infinitary Hilbert-style

axiomatic system is provided.
• For non-compactness, it is not possible to obtain a strong

completeness result with a finitary proof system.
• The possibility for finitary weak completeness is left for

future work.
• Another obvious direction for future work is relaxing the

simplifying assumptions in the framework, in particular to
allow modelling of higher-order beliefs and tweets.
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