\circ

Arbitrary Propositional Network Announcement Logic

Zuojun Xiong

Institute of Logic and Intelligence, Southwest University, Chongqing, China joint work with Thomas Agotnes

9-10 October 2020, DaLí 2020@ZOOM

[Introduction](#page-2-0)

[The Logic of APNAL](#page-10-0)

[Proof System](#page-18-0)

[Discussion](#page-29-0)

An Extension of propositional network announcement logic PNAL

- Reasoning about information interaction in social networks [\[Seligman et al., 2013,](#page-33-0) [Xiong et al., 2017,](#page-33-1) [Baltag et al., 2019,](#page-31-0) [Morrison and Naumov, 2020\]](#page-32-0);
- Quantifying over informational events [\[Balbiani et al., 2007,](#page-31-1) Ågotnes et al., 2010]: Add a GAL-style modality $\langle a \rangle$ for each agent *a* to a minimal logic for reasoning about "tweeting" (the act of making network announcements), like Twitter, Weibo¹:
	- the sending by one agent of a message which received simultaneously by a number of other agents (the sender's *followers*), determined by the network structure.

1A Twitter-like social media application in China And Added A Example 2 \equiv

Language of PNAL [\[Xiong et al., 2017\]](#page-33-1)

Let Agnt and Prop be non-empty sets of agent names and atomic propositional letters, respectively.

Definition (Language $\mathcal{L}_{\text{PNAL}}$)

The language of propositional network announcement logic (PNAL) is defined by the following grammar, where $p \in \text{Prop}$ and $a \in \text{Agnt}$:

$$
\theta \ ::= \ p \mid \neg \theta \mid \theta \wedge \theta \qquad \varphi \ ::= \ B_a \theta \mid \neg \varphi \mid \varphi \wedge \varphi \mid \langle a : \theta \rangle \varphi.
$$

[Introduction](#page-2-0) [The Logic of APNAL](#page-10-0) [Proof System](#page-18-0) [Discussion](#page-29-0)

 \circ

Models

Definition (Models)

A propositional network announcement model over Agnt and Prop is a pair (F, ω) , where

- the following relation *F* is a binary relation on **Agnt** and
- the belief state function ω : Agnt \rightarrow pow(Val) assigns each agent a (possibly empty) set of valuations.

We write *Fa* for the set ${b \mid bFa}$ of followers of *a*.

Beliefs in restriction

Same as in PNAL, we restrict the beliefs of the agents, and the messages they can tweet,

• to be about propositional sentences only.

 \circ

Belief update

Definition (Belief update)

When (only) agent *a*'s belief state is updated with θ , the result is the belief state function $[a \uparrow \theta] \omega$. More generally, the result of updating all the agents in a set *C* of agents with θ is $[C \uparrow \theta] \omega$, where

$$
[C \uparrow \theta] \omega(b) = \begin{cases} \omega(b) \cap [\![\theta]\!] & \text{if } b \in C \\ \omega(b) & \text{otherwise} \end{cases}
$$

Satisfaction

Definition (Satisfaction)

 $F, \omega \models B_a \theta$ iff $\omega(a) \subseteq \llbracket \theta \rrbracket$ $F, \omega \models \neg \varphi$ iff $F, \omega \not\models \varphi$ $F, \omega \models \varphi \land \psi$ iff $F, \omega \models \varphi$ and $F, \omega \models \psi$ $F, \omega \models \langle a : \theta \rangle \varphi$ iff $F, \omega \models B_a \theta$ and $F, [Fa \uparrow \theta] \omega \models \varphi$

Intr**oduction**

Παρασκευάλιος του Τρίτου Του Τρίτου Τρίτου Τρίτου Τρίτου Ριακοποιού του Οργανικού Προσφαλικού Τρίτου Τρίτου Τρίτου

Παρασκευάλιος του Οργανικού Προσφαλικού Προσφαλικού Προσφαλικού Προσφαλικού Τρίτου Τρίτ

00000000000

 \circ

 2990

Interpretation

- $B_a\theta$ for agent *a* believes θ , formulas of the form $B_a\theta$ are called belief formulas, expressions of the type θ are sometimes called messages;
- $\langle a : \theta \rangle \varphi$ for *a* can tweet θ , after which φ is the case. $[a : \theta]$ for $\neg \langle a : \theta \rangle \neg$.
- \bullet \vec{c} is representing a (possibly empty) sequence of tweets, a variable over expressions of the form $c_0 : \theta_0, \ldots, c_n : \theta_n$ $(n\geq 0)$, where each c_i is an agent and each $\theta_i\in \mathcal{L}_{\mathsf{PROP}}.$
- We write $\langle \vec{c} \rangle$ for the sequence $\langle c_0 : \theta_0 \rangle \dots \langle c_n : \theta_n \rangle$, and $[\vec{c}]$ for $\neg \langle \vec{c} \rangle$ -.

[Introduction](#page-2-0) [The Logic of APNAL](#page-10-0) [Proof System](#page-18-0) [Discussion](#page-29-0)

 \circ

Axiomatization of PNAL

Figure: Axioms and rules of PNAL. $\varphi, \psi \in \mathcal{L}_{\text{PNAL}}, \theta, \theta_i, \chi, \chi' \in \mathcal{L}_{\text{PROP}}$. \vdash_0 denotes derivability in propositional logic.

Theorem (Theorem 3 in [\[Xiong et al., 2017\]](#page-33-1)) PNAL *is sound and strongly complete with respect to the class of all models.*

Language and semantics of APNAL

The language of APNAL is \mathcal{L}_{APNA} , a conservative extension of PNAL, defined as follows, where $\theta \in \mathcal{L}_{\text{PROP}}$ and $a \in$ Agnt:

$$
\varphi \ ::= \ B_a \theta \mid \neg \varphi \mid \varphi \land \varphi \mid \langle a : \theta \rangle \varphi \mid [a] \varphi
$$

We use derived connectives as for $\mathcal{L}_{\text{PNAL}}$, in addition to $\langle a \rangle \varphi$ for $\neg[a]\neg\varphi$

[Introduction](#page-2-0) [The Logic of APNAL](#page-10-0) [Proof System](#page-18-0) [Discussion](#page-29-0)

 \circ

Satisfaction

Definition (Satisfaction)

Satisfaction of a formula φ' in a model F, ω is defined by

$$
F, \omega \models [a] \varphi \text{ iff } F, \omega \models [a:\theta] \varphi \text{ for all } \theta \in \mathcal{L}_{\mathsf{PROP}}
$$

in addition to the clauses for $\mathcal{L}_{\text{PNAI}}$.

In other words, [*a*] quantifies over all possible announcements *a* can truthfully make. We get that

$$
F, \omega \models \langle a \rangle \varphi \text{ iff } F, \omega \models \langle a : \theta \rangle \varphi \text{ for some } \theta \in \mathcal{L}_{\mathsf{PROP}}
$$

Validities of APNAL

The following validities follow immediately from the semantics.

Proposition

Let $a \in$ Agnt, and $\varphi, \psi \in \mathcal{L}_{APNA}$. We have

$$
\begin{array}{lll}\n\models [a]\varphi \rightarrow \varphi & \models [a]\varphi \rightarrow [a:\theta]\varphi \\
\models [a]\varphi \rightarrow \langle a\rangle \varphi & \models [a]\neg \varphi \leftrightarrow \neg \langle a\rangle \varphi \\
\models [a](\varphi \land \psi) \leftrightarrow ([a]\varphi \land [a]\psi) & \models [a](\varphi \rightarrow \psi) \rightarrow ([a]\varphi \rightarrow [a]\psi) \\
\models [a][a]\varphi \leftrightarrow [a]\varphi\n\end{array}
$$

Non-validities of the two types of modalities

The following combinations are generally *not* valid:

$$
\bullet \not\models [a:\theta][b]\varphi \rightarrow [b][a:\theta]\varphi
$$

$$
\bullet \not\models [b][a:\theta]\varphi \rightarrow [a:\theta][b]\varphi
$$

$$
\bullet \nvDash [a:\theta]\langle b\rangle\varphi \rightarrow \langle b\rangle[a:\theta]\varphi
$$

00000000000

 \circ

Church-Rosser like property

The fourth combination, is a Church-Rosser like property. The formula

$$
\langle b : \chi \rangle [a : \theta] \varphi \to [a : \theta] \langle b : \chi \rangle \varphi
$$

is valid [\[Xiong et al., 2017,](#page-33-1) Pop. 11]. The fourth combination property is in fact valid:

Proposition (Mixed-CR)

Let $a, b \in A$, $\theta \in \mathcal{L}_{\text{PROP}}$, and $\varphi \in \mathcal{L}_{\text{APNA}}$. We have $\models \langle b \rangle [a : \theta] \varphi \rightarrow [a : \theta] \langle b \rangle \varphi.$

Proposition (CR)

Let $a, b \in A$, and $\varphi \in \mathcal{L}_{\mathsf{APNAI}}$. We have $\models \langle a \rangle [b] \varphi \rightarrow [b] \langle a \rangle \varphi$.

 $(1, 1, 2)$ and $(1, 1, 1, 1)$ and $(1, 1, 1, 1, 1)$

McKinsey formula

It's not hard to see that the McKinsey formula,

 $[a]\langle b\rangle\varphi \rightarrow \langle b\rangle[a]\varphi$

is not valid, observed that

$$
[a:\theta]\langle b:\chi\rangle\varphi\to\langle b:\chi\rangle[a:\theta]\varphi
$$

is not valid.

Non-validities involving combinations of diamonds

- $\not\models \langle a \rangle \langle b \rangle \langle a \rangle \varphi \rightarrow \langle a \rangle \langle b \rangle \varphi$
- $\not\models \langle a \rangle \langle b \rangle \langle a \rangle \varphi \rightarrow \langle b \rangle \langle a \rangle \varphi$
- $\not\models \langle a \rangle \langle b \rangle \varphi \leftrightarrow \langle b \rangle \langle a \rangle \varphi$

Non-compactness

APNAL is not compact when there are at least two different agents. Let $b \neq a$ and

$$
\Delta = \{\neg B_b p, \langle a \rangle B_b p\} \cup \{B_a \theta \rightarrow B_b \theta : \theta \in \mathcal{L}_{\mathsf{PROP}}\}.
$$

We can see that Δ is unsatisfiable but any finite subset is satisfiable.

 \circ

Infinitary Hilbert-style proof systems

Infinitary Hilbert-style proof systems are standard technique can be found in [\[Renardel de Lavalette et al., 2002,](#page-32-1) [Agotnes and Walicki, 2005,](#page-30-1) [Kooi, 2006,](#page-32-2) [Studer, 2008\]](#page-33-2).

Our technique inspired from the completeness proof for APAL [\[Balbiani and van Ditmarsch, 2015\]](#page-31-2) and make use of Goldblatt's necessitation forms[\[Goldblatt, 1982\]](#page-32-3).

[Introduction](#page-2-0) [The Logic of APNAL](#page-10-0) [Proof System](#page-18-0) [Discussion](#page-29-0)

 $0 0000000000$

 \circ

Necessity form

Definition (Necessity form)

Necessity forms are defined inductively as follows.

- \bullet # is a necessity form.
- If $\hat{\psi}$ is a necessity form and $\varphi \in \mathcal{L}_{APNAL}$, then $\varphi \to \hat{\psi}$ is a necessity form.
- If $\hat{\psi}$ is a necessity form and $a \in$ Agnt, $\theta \in \mathcal{L}_{\text{PROP}}$, then $[a: \theta]\hat{\psi}$ is a necessity form.

We write \mathcal{L}_{NEC} to denote the set of all necessity forms. If $\hat{\varphi}$ is a necessity form and ψ a formula, then $\hat{\varphi}(\psi)$ is the formula obtained by substituting (the unique) $\#$ in $\hat{\varphi}$ with ψ .

4 ロ > 4 何 > 4 ミ > 4 ミ > 1

÷

つへへ

Axiomatization of APNAL *S* ω

Definition

The derivation relation \vdash_{S^ω} (\vdash_ω for simplicity), between sets of \mathcal{L}_{APNA} -formulas and \mathcal{L}_{APNA} -formulas is the smallest relation satisfying the properties in the following figure (lower part).

Figure: Axioms (upper part) and definition of the infinitary derivation relation \vdash over the language \mathcal{L}_{APNAL} (lower part). $\Gamma \vdash \Delta$ means that $\Gamma \vdash_{\omega} \varphi$ for each $\varphi \in \Delta$.

Why **DIA** in necessity forms?

DIA is the only infinitary derivation rule. Let us illustrate **DIA** with some examples.

\n- **C1:**
$$
\{[a:\theta]\varphi \mid \theta \in \mathcal{L}_{\text{PROP}}\} \vdash_{\omega} [a]\varphi.
$$
\n- **C2:** $\{\psi \rightarrow [a:\theta]\varphi \mid \theta \in \mathcal{L}_{\text{PROP}}\} \vdash_{\omega} \psi \rightarrow [a]\varphi$
\n- **C3:** $\{[b:\chi][a:\theta]\varphi \mid \theta \in \mathcal{L}_{\text{PROP}}\} \vdash_{\omega} [b:\chi][a]\varphi.$
\n- **C4:** $\{[b:\chi](\psi \rightarrow [a:\theta]\varphi) \mid \theta \in \mathcal{L}_{\text{PROP}}\} \vdash_{\omega} [b:\chi](\psi \rightarrow [a]\varphi).$
\n- **C5:** A general case of C3: $\{\underbrace{[b_1:\chi_1]\cdots[a:\theta]\cdots[b_n:\chi_n]}_{\text{finite}}\varphi \mid \theta \in \mathcal{L}_{\text{PROP}}\} \vdash_{\omega} \underbrace{[b_1:\chi_1]\cdots[a]\cdots[b_n:\chi_n]}_{\text{only change one modality}}\varphi.$
\n

イロトメ 伊 トメ 君 トメ 君 トー

[Introduction](#page-2-0) [The Logic of APNAL](#page-10-0) [Proof System](#page-18-0) [Discussion](#page-29-0)

 \circ

Soundness of *S* ω

Lemma

For any formula φ *and set of formulas* Γ *, if* $\Gamma \vdash \varphi$ *then* $\Gamma \models \varphi$ *.*

The proof is by induction on the definition of the $\;\vdash_\omega\;$ relation.

- Base cases: **AX**, **MP**, and **DIA**.
- Inductive cases: **NA**, **W**, and **CUT**.

Admissible rules in *S* ω

(MO)	$\Gamma \cup \{\varphi\} \downarrow\hrightarrow{\varphi}$
(IMP)	$\Gamma \downarrow\hrightarrow{\varphi} \rightarrow \psi \& \Gamma \downarrow\hrightarrow{\varphi} \Rightarrow \Gamma \downarrow\hrightarrow{\psi}$
(RT)	$\Gamma \downarrow\hrightarrow{\varphi} \rightarrow \psi \Rightarrow \Gamma \cup \{\varphi\} \downarrow\hrightarrow{\psi}$
(Ns)	$\downarrow\hrightarrow{\varphi} \Rightarrow \downarrow\hrightarrow{[a:\theta]\varphi}$
(COND)	$\Gamma \cup \Delta \downarrow\hrightarrow{\varphi} \Rightarrow \Gamma \cup \{\psi \rightarrow \delta \mid \delta \in \Delta\} \downarrow\hrightarrow{\psi} \rightarrow \varphi$
(DT)	$\Gamma \cup \{\psi\} \downarrow\hrightarrow{\varphi} \Rightarrow \Gamma \downarrow\hrightarrow{\psi} \rightarrow \varphi$
(RAA)	$\Gamma \cup \{\varphi\} \downarrow\hrightarrow\bot \Rightarrow \Gamma \downarrow\hrightarrow{\varphi}$
(CON)	$\Gamma \downarrow\hrightarrow{\varphi} \land \psi \Rightarrow \Gamma \downarrow\hrightarrow{\varphi} \& \Gamma \downarrow\hrightarrow{\psi}$
(CON)	$\Gamma \downarrow\hrightarrow{\varphi} \land \psi \Rightarrow \Gamma \downarrow\hrightarrow{\varphi} \& \Gamma \downarrow\hrightarrow{\psi}$
(Eav)	$\Gamma \downarrow\hrightarrow{\varphi} \leftrightarrow \psi \Rightarrow \Gamma \downarrow\hrightarrow{\varphi} \Leftrightarrow \Gamma \downarrow\hrightarrow{\psi}$

Figure: Admissible rules in *S* ω.

Strong completeness of *S* ω

Lemma (Lindenbaum)

Let Γ be a consistent set of formulas. There exists an MCS Γ' *such that* $\Gamma \subseteq \Gamma'$.

Building MCS strategy:

- **DIA**-form. A formula obtained by substitution of $[a]\psi$ on a necessity form $\hat{\varphi}$, written $\hat{\varphi}([a]\psi)$, is on **D_IA**-form, the formula β : θ) = $\hat{\varphi}$ ([a : θ] ψ) is called a **DIA**-witness.
- Extension strategy: We construct $\Gamma' \supseteq \Gamma$ inductively as follows: $\Gamma_0 = \Gamma$, $\bar{\Gamma}' = \bigcup_{i \in \mathbb{N}} \Gamma_i$, and
	- $\Gamma_{i+1} = \Gamma_i \cup \{\psi_{i+1}\}\,$, if $\Gamma_i \vdash_i \psi_{i+1}$;
	- $\Gamma_{i+1} = \Gamma_i \cup \{\neg \psi_{i+1}\}\$, if $\Gamma_i \not\vdash_{\omega} \psi_{i+1}$ and ψ_{i+1} does not have the **DIA**-form;
	- $\Gamma_{i+1} = \Gamma_i \cup \{\neg \psi_{i+1}, \neg \psi_{i+1} : \theta\}$, if $\Gamma_i \not\vdash_{\omega} \psi_{i+1}$ and ψ_{i+1} has the **DIA**-form, and ψ_{i+1} : θ) is a **DIA**-witness and $\Gamma_i \not\vdash \psi_{i+1} (\colon \theta)$. **KORKARA KERKER SAGA**

[Introduction](#page-2-0) [The Logic of APNAL](#page-10-0) [Proof System](#page-18-0) [Discussion](#page-29-0)

 \circ

Strong completeness of *S* ω

Lemma (Lindenbaum)

Let Γ be a consistent set of formulas. There exists an MCS Γ' *such that* $\Gamma \subseteq \Gamma'$.

Building MCS strategy:

• The consistency of Γ' is showed by proving the following claim:

Claim For any Γ'' and φ such that $\Gamma'' \vdash_\omega \varphi$, we have $\Gamma'' \subseteq \Gamma' \Rightarrow \varphi \in \Gamma'.$

KORKARA KERKER SAGA

Canonical model and property

For any MCS Γ , F_{Γ} and ω_{Γ} are defined as follows [\[Xiong et al., 2017\]](#page-33-1):

• $bF_{\Gamma}a$ iff $|\vec{c}|[a:\theta]B_b\theta \in \Gamma$ for all \vec{c} and θ

•
$$
\omega_{\Gamma}(a) = \bigcap \{ \llbracket \theta \rrbracket \mid B_a \theta \in \Gamma \}.
$$

We also define the following, when Γ , Γ' are MCSs:

- Let $\langle a : \theta \rangle \Gamma = \{ \varphi \mid \langle a : \theta \rangle \varphi \in \Gamma \}.$
- Let $\Gamma \leq \Gamma'$ iff $B_a \theta \in \Gamma$ and $\Gamma' = \langle a : \theta \rangle \Gamma$ for some *a* and θ .
- Let \leq be the transitive closure of \triangleleft .

 0000000000

 \circ

Canonical model and property

Lemma ([\[Xiong et al., 2017\]](#page-33-1)) *If* Γ *is an MCS and* $\Gamma \leq \Gamma'$ *then*

- 1. Γ 0 *is also an MCS and*
- 2. *there is a* ~*c such that:*

(a) $\Gamma' = \langle \vec{c} \rangle \Gamma$ *, and* (b) $[\bar{c}]\varphi \in \Gamma$ *iff* $\varphi \in \Gamma'$ for all φ , where \bar{c} is the reversal of \bar{c} .

Lemma ([\[Xiong et al., 2017\]](#page-33-1))

If $\Gamma \leq \Gamma'$ *and* $B_a\theta \in \Gamma'$ *then* $[F_{\Gamma}a\uparrow \theta]\omega_{\Gamma'} = \omega_{\langle a:\theta \rangle \Gamma'}$.

 \circ

Truth Lemma and Strong Completeness

Lemma (Truth Lemma)

 F_{Γ} , $\omega_{\Gamma} \models \varphi$ *iff* $\varphi \in \Gamma$, for any φ and Γ .

Theorem (Strong Completeness)

For any set of formulas Γ *and formula* φ *, if* $\Gamma \models \varphi$ *then* $\Gamma \vdash \varphi$ *.*

[Introduction](#page-2-0) [The Logic of APNAL](#page-10-0) [Proof System](#page-18-0) [Discussion](#page-29-0)

nΩ

Conclusion

- Extended PNAL with "ability" operators of the form $\langle a \rangle$ quantifying over the possible tweets agent *a* truthfully can make.
- A sound and strongly complete infinitary Hilbert-style axiomatic system is provided.
- For non-compactness, it is not possible to obtain a strong completeness result with a finitary proof system.
- The possibility for finitary weak completeness is left for future work.
- Another obvious direction for future work is relaxing the simplifying assumptions in the framework, in particular to allow modelling of higher-order beliefs and tweets.

[Introduction](#page-2-0) [The Logic of APNAL](#page-10-0) [Proof System](#page-18-0) [Discussion](#page-29-0)

00000000000

÷.

 $2Q$

 \circ

References I

Agotnes, T., Balbiani, P., van Ditmarsch, H., and Seban, P. 譶 (2010). Group announcement logic.

Journal of Applied Logic, 8(1):62–81.

 \Box Agotnes, T. and Walicki, M. (2005).

Strongly complete axiomatizations of "knowing at most" in syntactic structures.

In *International Workshop on Computational Logic in Multi-Agent Systems*, pages 57–76. Springer.

[Introduction](#page-2-0) [The Logic of APNAL](#page-10-0) [Proof System](#page-18-0) [Discussion](#page-29-0)

00000000000

References II

- 量 Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., and de Lima, T. (2007). What can we achieve by arbitrary announcements?: A dynamic take on fitch's knowability. In *Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge*, TARK '07, pages 42–51, New York, NY, USA. ACM.
- **Balbiani, P. and van Ditmarsch, H. (2015).** A simple proof of the completeness of apal. *Studies in Logic*, 8(1):65–78.
- F.

Baltag, A., Christoff, Z., Rendsvig, R. K., and Smets, S. (2019).

Dynamic epistemic logic of diffusion and prediction in threshold models.

Studia Logica, 107(3):489–531.

[Introduction](#page-2-0) [The Logic of APNAL](#page-10-0) [Proof System](#page-18-0) [Discussion](#page-29-0)

00000000000

K ロ ト K 何 ト K ヨ ト K ヨ ト

舌

 $2Q$

References III

晶 Goldblatt, R. (1982). *Axiomatising the Logic of Computer Programming*. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

- Kooi, B. (2006). Hybrid logics with infinitary proof systems. *Journal of Logic and Computation*.
- F. Morrison, C. and Naumov, P. (2020). Group conformity in social networks. *Journal of Logic, Language and Information*, 29(1):3–19.
- F. Renardel de Lavalette, G. R., Kooi, B. P., and Verbrugge, R. (2002). Strong completeness for propositional dynamic logic. In *AiML2002-Advances in Modal Logic (conference proceedings)*, pages 377–393.

[Introduction](#page-2-0) [The Logic of APNAL](#page-10-0) [Proof System](#page-18-0) [Discussion](#page-29-0)

00000000000

References IV

Ħ Seligman, J., Liu, F., and Girard, P. (Chennai, India, 2013). Facebook and the epistemic logic of friendship. In Schipper, B. C., editor, *Proceedings of the 14th Conference on Theoretical Aspects of Rationality and Knowledge*, pages 229–238.

B Studer, T. (2008).

On the proof theory of the modal mu-calculus. *Studia Logica*, 89(3):343–363.

Xiong, Z., Agotnes, T., Seligman, J., and Zhu, R. (2017). Towards a logic of tweeting. In Baltag, A., Seligman, J., and Yamada, T., editors, *Logic, Rationality, and Interaction - 6th International Workshop, LORI 2017, Sapporo, Japan, September 11-14, 2017, Proceedings*, volume 10455 of *Lecture Notes in Computer Science*, pages 49–64. Springer.

B

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶